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1 Introduction

Galacto-oligosaccharides (GalOS), also known as ‘bifidus
growth factor’ since they promote the growth of desirable
intestinal microflora, are nondigestible carbohydrates

comprised of di-, tri-, tetra- or pentasaccharides that
mainly consist of galactose and glucose units joined
through various glycosidic bonds. GalOS are now widely
used as low calorie sweetener, food ingredients, pharma-
ceuticals and other biologically active compounds. Espe-
cially the use of GalOS in various foods have lately at-
tracted increasing attention as evidence is accumulating
which shows that the consumption of these prebiotic
oligosaccharides can be beneficial to human health [1].
GalOS can be synthesized by chemical synthesis, but
their preferred mode of synthesis on a preparative scale is
by enzymatic catalysis from lactose using an appropriate
β-galactosidase. The formation of GalOS by β-galactosi-
dases from yeast, fungi and bacteria has been reported.
The structure and product ratio of GalOS obtained by
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transgalactosylation reactions depend on the enzyme as
well as on the conditions employed in the transformation
reaction [1–5].

Various reactor designs and configurations have been
reported for lactose hydrolysis and GalOS formation, in-
cluding the batch reactor, continuous stirred-tank reactor
(CSTR), CSTR coupled with crossflow filtration, hollow fi-
bre membrane reactor, fixed-bed and fluidized-bed reac-
tor [6–11]. In the batch process, the enzyme initially added
to the reaction mixture is obviously lost at the end of the
reaction. The aim of continuous processes has been
chiefly to reduce the enzyme cost by reusing the enzyme
for the transformation of fresh substrate. This can be
achieved by immobilizing the enzyme on a carrier or by
retaining the soluble enzyme in the reactor by using an ul-
trafiltration membrane.

In the present study, we focus on the use of both a dis-
continuous stirred tank and a recycle membrane reactor,
consisting of a reactor coupled to a crossflow ultrafiltra-
tion membrane, for the production of GalOS using a nov-
el intracellular β-galactosidase from the moderately ther-
mophilic ascomycete Talaromyces thermophilus. This en-
zyme was found to be fairly thermostable with a half-life
time of activity of approximately 200 h at 40°C. It is char-
acterized by a relatively low Michaelis constant of 18 mM
for lactose, which compares favorably with kinetic con-
stants for β-galactosidases from other organisms. Fur-
thermore, this enzyme is only moderately inhibited by its
end product galactose (Ki = 420 mM) which is in contrast
to many other microbial β-galactosidases which are se-
verely inhibited by this sugar [12]. These properties make
the β-galactosidase from T. thermophilus attractive for
technological applications such as the production of
GalOS.

2 Materials and methods

2.1 Materials

Talaromyces thermophilus CBS 236.58 (Centraalbureau
voor Schimmelcultures, Utrecht, The Netherlands) was
used as the source of β-galactosidase. β-Galactosidase
solutions were produced by the moderately thermophilic
fungus and subsequently purified as recently reported
[12]. β-Galactosidase activity was measured by using lac-
tose as the substrate [12]. Lactose was purchased from
Sigma (Deisenhofen, Germany); all other chemicals were
of the highest grade available and were from Merck
(Darmstadt, Germany). The commercial GalOS product
Elix’or was obtained from Borculo (Zwolle, The Nether-
lands).

2.2 Methods

2.2.1 Batch conversions
Discontinuous conversions were performed in a beaker
using 10 mL of lactose solution (5–20% w/v lactose in
50 mM sodium phosphate buffer, pH 6.5, containing 10
mM MgCl2). This substrate solution was incubated with
β-galactosidase (25 U) in a shaker incubator under con-
stant agitation of 130 rpm at 40°C for 24 h. Aliquots were
taken at various times and the enzymatic reaction
stopped by a 10-min incubation at 95°C. The sugars were
analysed by capillary electrophoresis (CE) as previously
described [13]. The effect of pH on the conversion of lac-
tose and GalOS formation was examined in the pH range
of 5.5–6.5 using an initial lactose concentration of 10%
w/v. The effect of temperature on GalOS formation was
examined at both 30 and 40°C at pH 6.5 and an initial lac-
tose concentration of 10% w/v. Experiments were repeat-
ed at least twice, and the SD of corresponding experi-
ments was always less than 5%.

2.2.2 Continuous conversions
A reactor with a total volume of 21 mL was used with an
external crossflow ultrafiltration unit (Amicon) with a cut-
off of 10 kDa and a filtration surface of 50 cm2 (Fig. 1). The
enzyme was retained in the reactor while a solution con-
taining the relatively low-molecular weight products
(GalOS, glucose and galactose) and substrate (lactose)
passed through the membrane. The enzyme reactor was
operated at 40°C and using lactose solutions (initial con-
centration 10 and 20% w/v) dissolved in 50 mM phosphate
buffer (pH 6.5) containing 10 mM MgCl2 and β-galactosi-
dase (210 U total activity). A feed solution (10 and 20% w/v
lactose in 50 mM phosphate buffer, pH 6.5, containing
10 mM MgCl2) was continuously fed to the reactor at the
flow rates indicated until equilibrium of the reaction was
achieved. No leakage of enzyme was observed as deter-
mined by the enzyme activity in the permeate. No per-
meate was recycled. Given experimental results for the
production of GalOS are always for steady state condi-
tions. Experiments were repeated at least twice, and the
SD of corresponding experiments was always less than
5%.

3 Results and discussion

3.1 GalOS formation

Formation of notable amounts of byproducts during the β-
galactosidase-catalyzed hydrolysis of lactose, in addition
to the two primary reaction products galactose and glu-
cose, has been described for a number of β-galactosidas-
es from various sources [1], primarily for the retaining en-
zymes of glycosyl hydrolase family 2 or 1, such as the Es-
cherichia coli lacZ β-galactosidase. A strong transgalac-
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tosylation activity was also found for the novel β-galac-
tosidase from T. thermophilus both in discontinuous and
continuous transformation experiments. As was analysed
by CE, not only the main hydrolysis products glucose and
galactose but also GalOS were formed during incubation

of the enzyme with lactose. Analysis of product mixtures
using CE revealed the formation of several GalOS, with
different nonlactose disaccharides and trisaccharides be-
ing the main reaction products (Fig. 2).

3.2 Batch conversions

The effect of various reaction conditions, namely the pH
value (5.5, 6.0 and 6.5), temperature (30 and 40°C) and lac-
tose concentration (5, 10 and 20% w/v) on the formation of
GalOS by β-galactosidase from T. thermophilus was stud-
ied in discontinuous bioconversion experiments. The pH
value exerted a slight effect on GalOS formation with
pH 5.5 being optimal and GalOS formation decreasing
somewhat with increasing pH (Fig. 3). Increasing the
temperature from 30 to 40°C accelerated lactose hydroly-
sis as well as GalOS formation (Fig. 4). Similar results were
reported for the enzyme of Bifidobacterium infantis HL96
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Figure 1. Scheme of the continuous laboratory scale reactor with an exter-
nal crossflow ultrafiltration unit. P, peristaltic pump; M, UF membrane.

Figure 2. CE analysis of products from continuous lactose conversion by (A) β-galactosidase from T. thermophilus and (B) the commercial product Elix’or:
glucose (1), galactose (2), lactose (3), disaccharides (4), trisaccharides (5) and tetrasaccharides (6). Reaction conditions for the transformation in (A): 20%
w/v initial lactose concentration, reaction time 8 h with 90% lactose conversion.



Biotechnology
Journal Biotechnol. J. 2006, 1, 633–638

636 © 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

[14] and it was also suggested that temperature increase
is correlated with an increased transgalactosylation ac-
tivity [1, 15]. A further increase in temperature was found
to be disadvantageous when using the T. thermophilus
enzyme since it is rapidly inactivated at temperatures
above 50°C [12].

One of the most important factors to increase the
yields of GalOS products is the substrate concentration,
which should be as high as possible to shift the reaction
more towards transglycosylation [1]. The formation of
GalOS by T. thermophilus β-galactosidase showed a
marked dependence on the initial substrate concentra-
tion. As is shown in Fig. 5, at initial substrate concentra-
tions of 5, 10 and 20% w/v lactose, a maximum yield of 28,
32 and 50% GalOS was obtained, respectively. The time

course of lactose hydrolysis and product formation was in-
vestigated in more detail when using 20% w/v lactose as
the initial substrate concentration (Fig. 6). A maximum
concentration of approximately 100 g/L GalOS was ob-
served when 90% of the lactose was hydrolyzed. Since
these various oligosaccharides are, however, also sub-
strates of β-galactosidase and lactose is continuously de-
pleted from the reaction mixture, they are only formed
transiently and are in turn hydrolyzed when the reaction
proceeds. At the beginning of the reaction with this ini-
tially high lactose concentration, transgalactosylation
seems to proceed faster than hydrolysis and the first ma-
jor reaction products are various trisaccharides, which ac-
cumulate to up to 30% of the total sugars in the mixture
(60 g trisaccharides per liter) when lactose conversion is

Figure 3. Effect of the pH value on the hydrolysis of lactose and product
formation when using an initial lactose concentration of 10% (reaction
conditions: 40°C, 24 h reaction time, β-galactosidase activity 2.5 U/mL).
Sugars are given as the percentage of total sugar content in the mixture.
■, Glu; ■, Gal; ■, GalOS.

Figure 4. Effect of temperature on the hydrolysis of lactose and product
formation when using the initial lactose concentration 10% (reaction con-
ditions: pH 6.5, 24 h reaction time, β-galactosidase activity 2.5 U/mL).
Sugars are given as the percentage of total sugar content in the mixture.
■■, Lac; ■, Glu; ■, Gal; ■, GalOS.

Figure 5. Time course of lactose hy-
drolysis in enzymatic batch reaction
when using different initial concentra-
tions of lactose: (�) 5%, (�) 10% and
(●) 20% (reaction conditions: 40°C,
pH 6.5; β-galactosidase activity
2.5 U/mL).
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approximately 50%. These trisaccharides, however, are
rapidly degraded with the progress of the reaction. With
the increased availability of the primary reaction products
galactose and glucose, various nonlactose disaccharides
are then formed as major transgalactosylation products. In
contrast to the trisaccharides, these are more resistant to
hydrolysis by T. thermophilus β-galactosidase. Hence, de-
pending on the reaction time or degree of lactose conver-
sion, a different range of products can be obtained in
these reactions. The maximum amount of GalOS was ob-
tained after 8 h of incubation when 90% lactose hydroly-
sis was observed. This maximum yield (gram GalOS pro-
duced per gram of total lactose employed) of approxi-

mately 50% compares very favorably to data published in
the literature for other microbial β-galactosidases [2]. It
has been stated that highest levels of GalOS obtained (of
around 40%) are associated with neutral pH β-galactosi-
dases from bacteria and yeast rather than acid pH en-
zymes from fungi [16]. The acidic β-galactosidase from T.
thermophilus (pH optimum for lactose hydrolysis of
5.5–6.0) clearly does not confirm this trend as it catalyses
the formation of very high yields of total GalOS (nonlac-
tose disaccharides and higher oligosaccharides).

3.3 Continuous conversion

For the steady state condition in a continuous reactor, sig-
nificant product (GalOS) concentrations can be achieved
in the permeate. Figure 7 shows the effect of both the sub-
strate concentration and the flow rate on GalOS produc-
tion. In accordance with the discontinuous experiments,
the maximum GalOS concentration obtained depends on
the concentration of the substrate in the feed. The GalOS
productivity (g/L·h) was also enhanced by an increase
of the flow rate. The maximum GalOS productivity of
70 g/L·h was obtained with a flow rate of 24 mL/h. Under
these optimized conditions (20% w/v lactose, flow rate
24 mL/h, 40°C, pH 6.5), approximately 50% of the lactose
was converted. In contrast to the discontinuous transfor-
mation, where trisaccharides were the main products at
approximately 50% lactose conversion, the main products
under a continuous mode of operation were disaccharides
(25% of total sugars in the reaction mixture), while tri-
saccharides were formed only to a lesser extent (7% of
total sugars in the reaction mixture). The productivity
of 70 g/L·h obtained under these reaction conditions,
which corresponds to a specific productivity of 7.0 mg
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Figure 6. Time course of lactose hydrolysis in enzymatic batch reaction
when using 20% initial concentration of lactose: Lactose (●), glucose
(Glu) (�), galactose (Gal) (��), total GalOS (�) including nonlactose disac-
charides (��) and trisaccharides (●●) as analysed by CE.

Figure 7. Formation of GalOS in a
continuous reactor: Effect of both the
substrate concentration and flow rate
on the productivity; GalOS (cycles),
Glu (squares) and Gal (triangles). Ex-
periments were carried out using an
initial lactose concentration of 10%
(opened symbols) and 20% (closed
symbols).
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GalOS/U·h, is in excellent agreement with other reports
on continuous systems using free enzymes that are re-
tained by ultrafiltration membranes, e.g. a value of 6.4 mg
GalOS/U·h was obtained when using the β-galactosidase
from the yeast Kluyveromyces lactis [17].

4 Concluding remarks

Our results presented in this work suggest that β-galac-
tosidase from the thermophilic fungus T. thermophilus
cannot only be used for lactose hydrolysis but also for the
efficient formation of prebiotic GalOS, compounds that
are of great interest for food and feed applications be-
cause of proven and presumed beneficial effects on health
and well-being [1]. This study also recommends that high
lactose concentrations and high temperature are desir-
able for GalOS synthesis; high temperature favored both
increased reaction velocity and substrate solubility, while
also helping to prevent unwanted microbial contamina-
tion during a long time process. Both discontinuous and
continuous modes of operation are possible for attaining
significant GalOS formation. Interestingly, the mode of
operation had a clear effect on the composition of the
product mixture with a larger fraction of trisaccharides
being formed in batch production. Further studies, how-
ever, need to be carried out to investigate and evaluate
the effects of these different GalOS structures on fermen-
tation properties of various intestinal bacteria and thus on
their prebiotic effect.
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Commission for financing this research (AUNP Pro-
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